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straint torques, result:
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and

= 1 , if g/ belongs to a joint anywhere on the chain of
boHies connecting body />t and the reference body

= 0, otherwise (e.g., if pt = 0)

The use and numerical integration of Eqs. (16) will be little
changed from that of the original equations f except that the
joint velocities and accelerations with respect to the bodies
they connect, £j^ anf? J^x^ respectively, must be prescribed
and hence £>f7and ^C determined from Eq. (5). To deter-
mine the spacecraft attitude with respect to an external frame,
a set of first-order equations, such as Euler angle rate equa-
tions, must be added. We have found that as a check on the
accuracy of the computer code, which can be lengthy, it is
helpful to add a routine which determines total system angular
momentum about the mass center and check for its conserva-
tion when no external torques are considered.
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Introduction

ACOMMON method for investigating the effectiveness of
various control designs consists of studying frequency do-

main characteristics of the control, by numerically evaluating
the required Fourier transform. For finite-time open^- and
closed-loop control problems, this can be accomplished by
either numerically integrating the integral definition of
Fourier transform for each frequency of interest, or using a
fast Fourier transform algorithm. Alternatively, we present in
this Note a computationally efficient closed-form solution for
the Fourier transform of finite-time open- and closed-loop
control problems, where the dynamics of the control is
governed by matrix exponentials.

Problem Formulation
The fundamental definition of the complex Fourier

transform follows as

= (J0 (nxl) (D

where u(t) is assumed to be given by1"4

u(f}-A^lb (nxl) (2)

where A is nxm, B is mxm, e ( ' } is the matrix exponential,
and b is mxl.

Introducing Eq. (2) into Eq. (1) yields

where

(3)

(4)
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As shown in Ref. (5), the integral appearing in Eq. (4) can
be evaluated by defining the complex matrix

£>(«) =
-B b ~\}n

0 —/co
n 1

(5)

and computing the matrix exponential

.F, G1

0 F2

from which it follows that

0-Br

(6)

(7)

Since the numerical effort required to compute G1 for each
desired value of co is prohibitive, we present in the next section
a coordinate transformation that greatly reduces the computa-
tional burden required to produce £(co) in Eq. (7).

Reducing Subspace Coordinate Transformation
In this section we present an algorithm for reducing the

complex matrix D in Eq. (5) to block diagonal form by a
similarity transformation.6 In particular, we see a complex
nonsingular matrix $, such that $~7Z><I> has the form

(8)

The transformation matrix $ is assumed to have the special
form

$ =

where the inverse of $ can be shown to be

I P

0 1

Hence,

—B Bp — iup + b

0 /co
(9)

and the problem of determining $ becomes that of solving the
following linear equation for p:

(10)

where the solution for p is well defined provided that /co is not
an eigenvalue of B.

Table 1 Solution techniques for 77(00)

B Diagonalizable B Ill-conditioned eigensystem

A = diag [X7, ..., X w ] A = upperquasitriangulara

yir = -|8i//(X/-'/a))C/ = !,...,«) [ X -/a>7] 7.7 = -18 (easy to solve)

R = right eigenvector of B
LTBR=A

L = left eigenvector of B
LTR = I (biorthogonality)

UTBU= A (real Schur
decomposition)

t/rC/= / (orthogonality)

aA quasitriangular matrix is triangular with possible nonzero 2x2 blocks
on the diagonal.

From Eq. (8) it follows that the matrix exponential of Eq.
(6) can be written as

Br e~Brp-pe~i(l3T

0
(11)

Comparing Eqs. (6) and (11) it follows that the desired integral
for £(co) in Eq. (7) is given by

(12)

where the entire solution follows after determining/? from Eq.
(10) for each frequency of interest. The significant feature of
Eq. (12) is that the computationally intensive solution for e*T

must be carried out only one time, thus greatly reducing the
labor required to produce £( co).

Solution for the Uncoupling Transformation Vector
Since the B matrix in Eq. (10) is constant and generally fully

populated, we seek a solution technique that minimizes the
computational effort. However, we recognize that there are
two classes of solutions possible: 1) systems where B is
diagonalizable; and 2) systems where the eigensystem for B is
ill-conditioned.

The solutions for both classes of problems are obtained via
a "transformation method.*' In particular, such methods are
based upon the equivalence of the problems7'8

[J3-/co/]/?(co) = -b, 03)

The solution algorithms for both classes of problems are
listed in Table 1. However, if /co = Xy, then Eq. (6) can be used
to obtain the solution. The desired solution for w(co) follows
on introducing Eq. (12) into Eq. (3), yielding

u(u)=A{p-eBTpe-i«T] (14)

In order to efficiently evaluate Eq. (14), it is necessary to
recast the equation in the form

(15)

where ;47=AR and A2=AeBrR if B is diagonalizable, and
A1=AUandA2=AeBTUifBis ill-conditioned.

Example Application
Given the first-order system

x=-x+u\ given x(0) = 0, X(T)=!

we seek the control u to minimize

f=__ \ U2dt
2 Jo

The open-loop control can be shown to be

u(t)-— X(0 (X = costate)

where

*(01 = . rx(o) i jB= r "7 ~7
MO J I X(0) J' [ o i

' e~* -sinh/1

0 e< \
\; X(0)=-7/sinhr

(16)

(17)

(18)
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Thus the control of Eq. (16) can be written as

u(t)=AeBtb = e'/sinhr (19)

where A=[Q -I], eBt is defined by Eq. (18), and
& = (0g-l/sinhr)r. The analytic Fourier transform of u(t)
follows as

A Robust Compensator Design
by Frequency-Shaped Estimation

J.A. Bossi*
University of Washington, Seattle, Washington

(20)

Since B is diagonalizable, we use the right and left eigenvec-
tor transformation method to solve Eq. (13), leading to

M/2 -7/V21

0 2/V2 J

-1 0

T2/V2 0
= \L

A =

from which it follows that

0 1

= _ [;/(V2sinhr), 7/(V2sinhr)] T

y = ( - 1/ [ (l + /co)V2sinhT] , 17 [(1 - /oj)V2sinhr ] )T

Aj =AR = [ft -2/V2], A2 =AeBrR = [0, -2eT/V2]

Thus, from Eq. (15) we have

- /co)sinhr ] (21)

where Eq. (21) agrees with Eq. (20).-

Conclusions
A computationally efficient algorithm has been presented

for obtaining the complex Fourier transform of a class of vec-
tor functions that frequently occur in modern control theory.
The basic algorithm requires 1) the evaluation of a single
matrix exponential for the dynamics of the time-varying con-
trol; 2) the solution for either the right and left eigenvectors or
a real Schur decomposition of the constant control dynamics
matrix; 3) the sequential solution for the reducing subspace
transformation vector p; and 4) the evaluation of a single
scalar complex exponential.
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Introduction

MUCH has been made in recent literature1'4 regarding the
lack of robustness of servo loops designed by so-called

* optimal' stochastic control theory, i.e. Linear-Quadratic Syn-
thesis (LQS) methods. It has even been claimed5 that LQS
should not be used on control systems for aerospace vehicles
because of its sensitivity to plant uncertainties and its inap-
propriate bandwidth characteristics.

Frequency domain analysis of multivariable control loops
indicates that linear state feedback provides good stability
margins,6 but that estimated state feedback can reduce these
margins to zero.1 It has been proposed to modify the Linear-
Quadratic-Gaussian (LQG) estimator design procedure by ad-
ding fictitious process noise at the control inputs to restore the
margins,2'7 but that approach typically introduces high fre-
quency modes into the estimator as the spectral density of this
noise is increased.

This note describes an example using a frequency-shaped
cost functional on measurement noise in LQG estimator
design as a means for improving control loop robustness. The
theory and implementation of frequency-shaped LQS design
has been described elsewhere.8'11 Kirn9'10 has shown that shap-
ing the measurement noise of individual measurements using
classical compensators, such as lead or lag networks, as shap-
ing filters is effective in modifying multivariable controller
robustness. This procedure results in transmission zeros being
inserted into the estimator transfer matrix at prescribed fre-
quencies. The selection of these frequencies (i.e. of the shap-
ing filters) is accomplished by a frequency response analysis of
the standard LQS controller design. The resulting estimator
has higher order than the * optimal' estimator, but it is no more
complicated to design, and its bandwidth can be maintained in
a reasonable range by choice of the usual LQS weighting
parameters.

A Design Application
As an illustrative example of the effect of this procedure on

frequency response of a multivariable loop, a controller design
was undertaken on the single-input/two-output, 4th-order
model for the azimuth pointing control servo of the Multiple
Mirror Telescope.12 This optical telescope, sponsored by the
Smithsonian Institute and the University of Arizona, consists
of six coaligned 1.8-meter primary mirrors in a hexagonal
structure on an azimuth-altitude mount. The pointing controls
include DC electric motors driving ring gears through a
100-to-l reduction. Compliance in the gears combines with
motor dynamics to produce the 4th-order model. A classically
designed compensator with a bandwidth of about .5 Hz is
presently used for control on each axis.

A state space representation of the azimuth axis system in
the form

= Cx+v (1)
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